An Integrated Energy System Operating Scenarios Generator Based on Generative Adversarial Network
نویسندگان
چکیده
منابع مشابه
Energy-based Generative Adversarial Network
We introduce the “Energy-based Generative Adversarial Network” model (EBGAN) which views the discriminator as an energy function that associates low energies with the regions near the data manifold and higher energies with other regions. Similar to the probabilistic GANs, a generator is trained to produce contrastive samples with minimal energies, while the discriminator is trained to assign hi...
متن کاملMulti-Generator Generative Adversarial Nets
We propose in this paper a new approach to train the Generative Adversarial Nets (GANs) with a mixture of generators to overcome the mode collapsing problem. The main intuition is to employ multiple generators, instead of using a single one as in the original GAN. The idea is simple, yet proven to be extremely effective at covering diverse data modes, easily overcoming the mode collapsing probl...
متن کاملAdversarial Examples Generation and Defense Based on Generative Adversarial Network
We propose a novel generative adversarial network to generate and defend adversarial examples for deep neural networks (DNN). The adversarial stability of a network D is improved by training alternatively with an additional network G. Our experiment is carried out on MNIST, and the adversarial examples are generated in an efficient way compared with wildly-used gradient based methods. After tra...
متن کاملInverting The Generator Of A Generative Adversarial Network
Generative adversarial networks (GANs) learn to synthesise new samples from a high-dimensional distribution by passing samples drawn from a latent space through a generative network. When the high-dimensional distribution describes images of a particular data set, the network should learn to generate visually similar image samples for latent variables that are close to each other in the latent ...
متن کاملInverting The Generator Of A Generative Adversarial Network (II)
Generative adversarial networks (GANs) learn a deep generative model that is able to synthesise novel, highdimensional data samples. New data samples are synthesised by passing latent samples, drawn from a chosen prior distribution, through the generative model. Once trained, the latent space exhibits interesting properties, that may be useful for down stream tasks such as classification or ret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2019
ISSN: 2071-1050
DOI: 10.3390/su11236699